Assessing the Vertical Structure of Forests Using Airborne and Spaceborne LiDAR Data in the Austrian Alps

Author:

Hirschmugl Manuela12ORCID,Lippl Florian1,Sobe Carina2

Affiliation:

1. Institute for Geography and Regional Sciences, University of Graz, 8010 Graz, Austria

2. Joanneum Research Forschungsgesellschaft mbH, DIGITAL–Institute for Digital Technologies, 8010 Graz, Austria

Abstract

Vertical structure is an important parameter not only for assessment of the naturalness of a forest and several functional parameters, such as biodiversity or protection from avalanches or rockfall, but also for estimating biomass/carbon content. This study analyses the options for assessing vertical forest structure by using airborne (ALS) and spaceborne LiDAR data (GEDI) in a mountainous near-natural forest in the Austrian Alps. Use of the GEDI waveform data (L1B) is still heavily underexploited for vertical forest structure assessments. Two indicators for explaining forest vertical structure are investigated in this study: foliage height diversity (FHD) and number of layers (NoL). For estimation of NoL, two different approaches were tested: break-detection algorithm (BDA) and expert-based assessment (EBA). The results showed that FHD can be used to separate three structural classes; separability is only slightly better for ALS than for GEDI data on a 25 m diameter plot level. For NoL, EBA clearly outperformed BDA in terms of overall accuracy (OA) by almost 20%. A better OA for NoL was achieved using ALS (49.5%) rather than GEDI data (44.2%). In general, OA is limited by difficult terrain and near-natural forests with high vertical structure. The usability of waveform-based structure parameters is, nonetheless, promising and should be further tested on larger areas, including managed forests and simpler stands.

Funder

Austrian Research Promotion Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3