Comparison and Assessment of Data Sources with Different Spatial and Temporal Resolution for Efficiency Orchard Mapping: Case Studies in Five Grape-Growing Regions

Author:

Yao Zhiying1ORCID,Zhao Yuanyuan123,Wang Hengbin1,Li Hongdong1,Yuan Xinqun4,Ren Tianwei1,Yu Le45ORCID,Liu Zhe123ORCID,Zhang Xiaodong123ORCID,Li Shaoming123

Affiliation:

1. College of Land Science and Technology, China Agricultural University, Beijing 100083, China

2. Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture and Rural Affairs, Beijing 100083, China

3. Key Laboratory for Agricultural Land Quality, Ministry of Natural Resources of the People’s Republic of China, Beijing 100083, China

4. Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China

5. Department of Earth System Science, Ministry of Education Ecological Field Station for East Asian Migratory Birds, Tsinghua University, Beijing 100084, China

Abstract

As one of the most important agricultural production types in the world, orchards have high economic, ecological, and cultural value, so the accurate and timely mapping of orchards is highly demanded for many applications. Selecting a remote-sensing (RS) data source is a critical step in efficient orchard mapping, and it is hard to have a RS image with both rich temporal and spatial information. A trade-off between spatial and temporal resolution must be made. Taking grape-growing regions as an example, we tested imagery at different spatial and temporal resolutions as classification inputs (including from Worldview-2, Landsat-8, and Sentinel-2) and compared and assessed their orchard-mapping performance using the same classifier of random forest. Our results showed that the overall accuracies improved from 0.6 to 0.8 as the spatial resolution of the input images increased from 58.86 m to 0.46 m (simulated from Worldview-2 imagery). The overall accuracy improved from 0.7 to 0.86 when the number of images used for classification was increased from 2 to 20 (Landsat-8) or approximately 60 (Sentinel-2) in one year. The marginal benefit of increasing the level of details (LoD) of temporal features on accuracy is higher than that of spatial features, indicating that the classification ability of temporal information is higher than that of spatial information. The highest accuracy of using a very high-resolution (VHR) image can be exceeded only by using four to five medium-resolution multi-temporal images, or even two to three growing season images with the same classifier. Combining the spatial and temporal features from multi-source data can improve the overall accuracies by 5% to 7% compared to using only temporal features. It can also compensate for the accuracy loss caused by missing data or low-quality images in single-source input. Although selecting multi-source data can obtain the best accuracy, selecting single-source data can improve computational efficiency and at the same time obtain an acceptable accuracy. This study provides practical guidance on selecting data at various spatial and temporal resolutions for the efficient mapping of other types of annual crops or orchards.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3