Using UAV-Based Photogrammetry Coupled with In Situ Fieldwork and U-Pb Geochronology to Decipher Multi-Phase Deformation Processes: A Case Study from Sarclet, Inner Moray Firth Basin, UK

Author:

Tamas Alexandra12,Holdsworth Robert E.23,Tamas Dan M.1ORCID,Dempsey Edward D.4ORCID,Hardman Kit4,Bird Anna4,Underhill John R.5,McCarthy Dave6ORCID,McCaffrey Ken J. W.23ORCID,Selby David2

Affiliation:

1. Department of Geology & Centre for Integrated Geological Studies, Babes-Bolyai University, 400084 Cluj-Napoca, Romania

2. Department of Earth Sciences, Durham University, Durham DH1 3LE, UK

3. Geospatial Research Ltd., Durham DH1 4EL, UK

4. Department of Geology, Hull University, Hull HU6 7RX, UK

5. School of Geosciences, University of Aberdeen, Aberdeen AB24 3FX, UK

6. British Geological Survey, Edinburgh RH14 4BA, UK

Abstract

Constraining the age of formation and repeated movements along fault arrays in superimposed rift basins helps us to better unravel the kinematic history as well as the role of inherited structures in basin evolution. The Inner Moray Firth Basin (IMFB, western North Sea) overlies rocks of the Caledonian basement, the pre-existing Devonian–Carboniferous Orcadian Basin, and a regionally developed Permo–Triassic North Sea basin system. IMFB rifting occurred mainly in the Upper Jurassic–Lower Cretaceous. The rift basin then experienced further regional tilting, uplift and fault reactivation during the Cenozoic. The Devonian successions exposed onshore along the northwestern coast of IMFB and the southeastern onshore exposures of the Orcadian Basin at Sarclet preserve a variety of fault orientations and structures. Their timing and relationship to the structural development of the wider Orcadian and IMFB are poorly understood. In this study, drone airborne optical images are used to create high-resolution 3D digital outcrops. Analyses of these images are then coupled with detailed field observations and U-Pb geochronology of syn-faulting mineralised veins in order to constrain the orientations and absolute timing of fault populations and decipher the kinematic history of the area. In addition, the findings help to better identify deformation structures associated with earlier basin-forming events. This holistic approach helped identify and characterise multiple deformation events, including the Late Carboniferous inversion of Devonian rifting structures, Permian minor fracturing, Late Jurassic–Early Cretaceous rifting and Cenozoic reactivation and local inversion. We were also able to isolate characteristic structures, fault kinematics, fault rock developments and associated mineralisation types related to these events

Funder

Natural Environment Research Council (NERC) Centre

Durham University

British Geological Survey

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3