Contributions of Various Temporal Components of Large-Scale Parameters in Tropical Cyclone Genesis over the North Indian Ocean

Author:

Dai Yifeng,Cao Xi,Wu RenguangORCID,Bi Mingyu,Lan XiaoqingORCID,Wang Yuanhao

Abstract

This work compares the contributions of synoptic, intraseasonal, and interannual components of large-scale parameters to tropical cyclone (TC) genesis over the North Indian Ocean (NIO) from April to December from 1979 to 2020. A composite analysis is employed with respect to TC genesis time and location. It is shown that most TCs occur when the total sea surface temperature (SST) is between 28 and 30 °C and SST anomalies in three time ranges are small (with the magnitude less than 0.2 °C). The TCs form mostly when the anomalies of vertical zonal wind shear are between −6 and 6 m s−1 and total vertical zonal wind shear falls within −12 and −3 m s−1, with the synoptic component being a positive contributor. The intraseasonal component of vorticity and convergence in the low level, vertical motion and specific humidity in the middle level, and convection contributes dominantly to the TC genesis. Synoptic-scale tropical disturbances obtain barotropic kinetic energy from the climatological mean and intraseasonal flows, with the former dominant in the southeastern sector, and the latter dominant in the northwestern sector. The contributions of the three temporal components of environmental factors are compared for TC genesis between the Arabian Sea (AS) and Bay of Bengal (BOB) and between the early season (April through June) and late season (September through December). The relative contributions of the three temporal components of factors are also compared for the TC formation among the NIO, northern tropical Atlantic Ocean (NTA), Northwestern Pacific (WNP), and Northeastern Pacific (ENP).

Funder

Tongji Zhejiang College

Open Grants of the State Key Laboratory of Severe Weather

State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3