SAR Image Classification Using Markov Random Fields with Deep Learning

Author:

Yang Xiangyu1,Yang Xuezhi1ORCID,Zhang Chunju2,Wang Jun3

Affiliation:

1. Anhui Province Key Laboratory of Industry Safety and Emergency Technology, School of Computer and Information, Hefei University of Technology, Hefei 230009, China

2. College of Civil Engineering, Hefei University of Technology, Hefei 230009, China

3. School of Mechanical Engineering, Quzhou University, Quzhou 324000, China

Abstract

Classification algorithms integrated with convolutional neural networks (CNN) display high accuracies in synthetic aperture radar (SAR) image classification. However, their consideration of spatial information is not comprehensive and effective, which causes poor performance in edges and complex regions. This paper proposes a Markov random field (MRF)-based algorithm for SAR image classification which fully considers the spatial constraints between superpixel regions. Firstly, the initialization of region labels is obtained by the CNN. Secondly, a probability field is constructed to improve the distribution of spatial relationships between adjacent superpixels. Thirdly, a novel region-level MRF is employed to classify the superpixels, which combines the intensity field and probability field in one framework. In our algorithm, the generation of superpixels reduces the misclassification at the pixel level, and region-level misclassification is rectified by the improvement of spatial description. Experimental results on simulated and real SAR images confirm the efficacy of the proposed algorithm for classification.

Funder

National Natural Science Foundations of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3