Comparison of Three Methods for Distinguishing Glacier Zones Using Satellite SAR Data

Author:

Barzycka Barbara1ORCID,Grabiec Mariusz1ORCID,Jania Jacek1,Błaszczyk Małgorzata1ORCID,Pálsson Finnur2ORCID,Laska Michał1ORCID,Ignatiuk Dariusz1ORCID,Aðalgeirsdóttir Guðfinna2ORCID

Affiliation:

1. Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzinska 60, 41-200 Sosnowiec, Poland

2. Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

Abstract

Changes in glacier zones (e.g., firn, superimposed ice, ice) are good indicators of glacier response to climate change. There are few studies of glacier zone detection by SAR that are focused on more than one ice body and validated by terrestrial data. This study is unique in terms of the dataset collected—four C- and L-band quad-pol satellite SAR images, Ground Penetrating Radar data, shallow glacier cores—and the number of land ice bodies analyzed, namely, three tidewater glaciers in Svalbard and one ice cap in Iceland. The main aim is to assess how well popular methods of SAR analysis perform in distinguishing glacier zones, regardless of factors such as the morphologic differences of the ice bodies, or differences in SAR data. We test and validate three methods of glacier zone detection: (1) Gaussian Mixture Model–Expectation Maximization (GMM-EM) clustering of dual-pol backscattering coefficient (sigma0); (2) GMM-EM of quad-pol Pauli decomposition; and (3) quad-pol H/α Wishart segmentation. The main findings are that the unsupervised classification of both sigma0 and Pauli decomposition are promising methods for distinguishing glacier zones. The former performs better at detecting the firn zone on SAR images, and the latter in the superimposed ice zone. Additionally, C-band SAR data perform better than L-band at detecting firn, but the latter can potentially separate crevasses via the classification of sigma0 or Pauli decomposition. H/α Wishart segmentation resulted in inconsistent results across the tested cases and did not detect crevasses on L-band SAR data.

Funder

European Space Agency

The Research Council of Norway

European Union

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference87 articles.

1. The European Space Agency (2021, July 10). CEOS. Committee on Earth Observation Satellites Database. Available online: http://database.eohandbook.com/.

2. Rapid, high-resolution detection of environmental change over continental scales from satellite data—The Earth Observation Data Cube;Lewis;Int. J. Digit. Earth,2016

3. Google Earth Engine Cloud computing platform for remote sensing Big Data applications: A Comprehensive Review;Amani;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2020

4. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

5. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3