The Influence of Laser Process Parameters on the Adhesion Strength between Electroless Copper and Carbon Fiber Composites Determined Using Response Surface Methodology

Author:

Wang Xizhao12ORCID,Liu Jianguo2,Liu Haixing1,Zhou Zhicheng2,Qin Zhongli3,Cao Jiawen3

Affiliation:

1. Institute of Laser and Intelligent Manufacturing Technology, South-Central Minzu University, Wuhan 430074, China

2. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China

3. School of Electronics and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China

Abstract

Laser process technology provides a feasible method for directly manufacturing surface-metallized carbon fiber composites (CFCs); however, the laser’s process parameters strongly influence on the adhesion strength between electroless copper and CFCs. Here, a nanosecond ultraviolet laser was used to fabricate electroless copper on the surface of CFCs. In order to achieve good adhesion strength, four key process parameters, namely, the laser power, scanning line interval, scanning speed, and pulse frequency, were optimized experimentally using response surface methodology, and a central composite design was utilized to design the experiments. An analysis of variance was conducted to evaluate the adequacy and significance of the developed regression model. Also, the effect of the process parameters on the adhesion strength was determined. The numerical analysis indicated that the optimized laser power, scanning line interval, scanning speed, and pulse frequency were 5.5 W, 48.2 μm, 834.0 mm/s, and 69.5 kHz, respectively. A validation test confirmed that the predicted results were consistent with the actual values; thus, the developed mathematical model can adequately predict responses within the limits of the laser process parameters being used.

Funder

Open Project Program of Wuhan National Laboratory for Optoelectronics

Fundamental Research Funds of Central Universities for South-Central Minzu University

Doctoral Research Fund of Hubei Institute of Science and Technology

Innovation and Entrepreneurship Key Incubation Project of Hubei University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3