Study on Electrically Modulated Quasi-Continuous Wave Fe: ZnSe Solid-State Laser with Hundred-Hertz

Author:

Wan Yingchao1ORCID,Shen Yanlong1,Wang Ke1,Chai Tongxing1,Wang Yousheng1,Chen Zhengge1,Zhu Feng1

Affiliation:

1. State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi’an 710024, China

Abstract

Iron-doped binary chalcogenide crystals are very promising for tunable solid-state lasers operating over the 3~5 μm spectral range. Fe: ZnSe is one of the most important gain crystals with the obvious advantages of material characteristics and conversion efficiency. By adjusting the output mode of the pump source, an Fe: ZnSe laser can operate in two modes at liquid nitrogen temperatures: continuous wave (CW) and pulse output. In terms of CW output, the Fe: ZnSe laser obtained a maximum 2.63 W continuous power output which was confined to the power of the pump source. An optical-to-optical efficiency of 47.05% was acquired. Direct electrical modulation was applied to the pump source. The highest average power of the quasi-CW laser, whose central wavelength is 4.02 μm, has a value of 253 mW with an optical-to-optical efficiency of 42.88% and a full width at half maximum (FWHM) of 23 nm when the pulse frequency is 100 Hz of 10% duty factor. The output waveform is consistent with the modulation waveform applied to the pump source. We report to the first of our knowledge an electrically modulated quasi-CW Fe: ZnSe laser in the pulse regime, equipped with features of compactness in structure, ignoring additional modulators, convenience in control, high efficiency, and sustainable operation, of great interest for solving numerous scientific and applied problems.

Funder

the State Key Laboratory of Laser Interaction with Matter

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3