Sensitive Detection of Trace Explosives by a Self-Assembled Monolayer Sensor

Author:

Liu Weitao1,Ali Wajid1ORCID,Liu Ye1,Li Mingliang2ORCID,Li Ziwei1ORCID

Affiliation:

1. Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, China

2. Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China

Abstract

Fluorescence probe technology holds great promise in the application of trace explosive detection due to its high sensitivity, fast response speed, good selectivity, and low cost. In this work, a designed approach has been employed to prepare the TPE-PA-8 molecule, utilizing the classic aggregation-induced emission (AIE) property of 1,1,2,2-tetraphenylethene (TPE), for the development of self-assembled monolayers (SAMs) targeting the detection of trace nitroaromatic compound (NAC) explosives. The phosphoric acid acts as an anchoring unit, connecting to TPE through an alkyl chain of eight molecules, which has been found to play a crucial role in promoting the aggregation of TPE luminogens, leading to the enhanced light-emission property and sensing performance of SAMs. The SAMs assembled on Al2O3-deposited fiber film exhibit remarkable detection performances, with detection limits of 0.68 ppm, 1.68 ppm, and 2.5 ppm for trinitrotoluene, dinitrotoluene, and nitrobenzene, respectively. This work provides a candidate for the design and fabrication of flexible sensors possessing the high-performance and user-friendly detection of trace NACs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Hunan Provincial Science and Technology Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3