Effects of Optical Sampling Pulse Power, RF Power, and Electronic Back-End Bandwidth on the Performance of Photonic Analog-to-Digital Converter

Author:

Qi Junli12ORCID,Chen Xin1,Fu Meicheng1ORCID,Zhang Hongyu1,Yi Wenjun1,Xu Tengfei3,Su Dezhi4,Zhang Hui2,Wei Xiaoming2,Shi Bo2,Li Xiujian1

Affiliation:

1. College of Science, National University of Defense Technology, Changsha 410073, China

2. Basic Department, Army Academy of Artillery and Air Defense, Hefei 230031, China

3. Beijing Institute of Systems Engineering and Information Control, Beijing 100071, China

4. College of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, China

Abstract

The effects of optical sampling pulse power, RF power, and electronic back-end bandwidth on the performance of time- and wavelength-interleaved photonic analog-to-digital converter (PADC) with eight-channel 41.6 GHz pulses have been experimentally investigated in detail. The effective number of bits (ENOB) and peak-to-peak voltage (Vpp) of converted 10.6 GHz electrical signals were used to characterize the effects. For the 1550.116 nm channel with 5.2 G samples per second, an average pulse power of 0 to −10 dBm input to the photoelectric detector (PD) has been tested. The Vpp increased with increasing pulse power. And the ENOB for pulse power −9~−3 dBm was almost the same and all were greater than four. Meanwhile, the ENOB decreased either when the pulse power was more than −2 dBm due to the saturation of PD or when the pulse power was less than −10 dBm due to the non-ignorable noise relative to the converted weak signal. In addition, RF powers of −10~15 dBm were loaded into the Mach–Zehnder modulator (MZM). The Vpp increased with the increase in RF power, and the ENOB also showed an increasing trend. However, higher RF power can saturate the PD and induce greater nonlinearity in MZM, leading to a decrease in ENOB, while lower RF power will convert weak electrical signals with more noise, also resulting in lower ENOB. In addition, the back-end bandwidths of 0.2~8 GHz were studied in the experiments. The Vpp decreased as the back-end bandwidth decreased from 8 to 3 GHz, and remained nearly constant for the bandwidth between the Nyquist bandwidth and the subsampled RF signal frequency. The ENOB was almost the same and all greater than four for a bandwidth from 3 to 8 GHz, and gradually increased up to 6.5 as the back-end bandwidth decreased from the Nyquist bandwidth to 0.25 GHz. A bandwidth slightly larger than the Nyquist bandwidth was recommended for low costs and without compromising performance. In our experiment, the −3 to −5 dBm average pulse power, about 10 dBm RF power, and 3 GHz back-end bandwidth were recommended to accomplish both a high ENOB more than four and large Vpp. Our research provides a solution for selecting optical sampling pulse power, RF power, and electronic back-end bandwidth to achieve low-cost and high-performance PADC.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

National Magnetic Confinement Fusion Program of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3