Effect of Substrates on the Physicochemical Properties of Li7La3Zr2O12 Films Obtained by Electrophoretic Deposition

Author:

Lyalin Efim1,Il’ina Evgeniya1ORCID,Pankratov Alexander1,Kuznetsova Tamara1,Kalinina Elena23ORCID

Affiliation:

1. Laboratory of Electrochemical Power Sources, Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, 620990 Yekaterinburg, Russia

2. Laboratory of Complex Electrophysic Investigations, Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, 620016 Yekaterinburg, Russia

3. Department of Physical and Inorganic Chemistry, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia

Abstract

Thin film technology of lithium-ion solid electrolytes should be developed for the creation of all-solid-state power sources. Solid electrolytes of the Li7La3Zr2O12 (LLZ) family are one of the promising membranes for all-solid-state batteries. LLZ films were obtained by electrophoretic deposition on Ti, Ni and steel substrates. The influence of different metal substrates on microstructure, phase composition and conductivity of the LLZ films after their heat treatment was studied. It was shown that the annealing of dried LLZ films in an Ar atmosphere leads to the transition from tetragonal modification to a low-temperature cubic structure. It was established that an impurity phase (Li2CO3) was not observed for LLZ films deposited on Ti foil after heat treatment, in contrast to films deposited on Ni and steel substrates. The highest lithium-ion conductivity values were achieved for the LLZ films annealed at 300 °C, 1.1 × 10−8 S cm−1 (at 100 °C) and 1.0 × 10−6 S cm−1 (at 200 °C).

Funder

Russian Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3