Naphtalimide-Based Bipolar Derivatives Enabling High-Efficiency OLEDs

Author:

Beresneviciute Raminta1,Gautam Prakalp2,Nagar Mangey Ram2,Krucaite Gintare1,Tavgeniene Daiva1ORCID,Jou Jwo-Huei2ORCID,Grigalevicius Saulius1ORCID

Affiliation:

1. Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania

2. Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Section 2, Guangfu Rd., East District, Hsinchu 30013, Taiwan

Abstract

Organic light-emitting diodes (OLEDs) have revolutionized the world of technology, making significant contributions to enhancing our everyday lives. With their exceptional display and lighting capabilities, OLEDs have become indispensable in various industries such as smartphones, tablets, televisions, and automotives. They have emerged as a dominant technology, inspiring continuous advancements, and improvements. Taking inspiration from the remarkable advancements in OLED advancements, we have successfully developed naphtalimide-based compounds, namely RB-08, RB-09, RB-10, and RB-11. These compounds exhibit desirable characteristics such as a wide bandgap, high decomposition temperatures (306–366 °C), and very high glass transition temperatures (133–179 °C). Leveraging these exceptional properties, we have harnessed these compounds as green emitters in the aforementioned devices. Among the various fabricated OLEDs, the one incorporating the RB-11 emitter has exhibited superior performance. This specific configuration achieved maximum power efficacy of 7.7 lm/W, current efficacy of 7.9 cd/A, and external quantum efficiency of 3.3%. These results highlight the outstanding capabilities of our synthesized emitter and its potential for further advancements in the field.

Funder

Research Council of Lithuania

Ministry of Science and Technology (MOST), Taiwan

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3