Fabrication of Highly Textured 2D SnSe Layers with Tunable Electronic Properties for Hydrogen Evolution

Author:

Zhou Qianyu,Wang Mengya,Li Yong,Liu Yanfang,Chen Yuanfu,Wu Qi,Wang ShifengORCID

Abstract

Hydrogen is regarded to be one of the most promising renewable and clean energy sources. Finding a highly efficient and cost-effective catalyst to generate hydrogen via water splitting has become a research hotspot. Two-dimensional materials with exotic structural and electronic properties have been considered as economical alternatives. In this work, 2D SnSe films with high quality of crystallinity were grown on a mica substrate via molecular beam epitaxy. The electronic property of the prepared SnSe thin films can be easily and accurately tuned in situ by three orders of magnitude through the controllable compensation of Sn atoms. The prepared film normally exhibited p-type conduction due to the deficiency of Sn in the film during its growth. First-principle calculations explained that Sn vacancies can introduce additional reactive sites for the hydrogen evolution reaction (HER) and enhance the HER performance by accelerating electron migration and promoting continuous hydrogen generation, which was mirrored by the reduced Gibbs free energy by a factor of 2.3 as compared with the pure SnSe film. The results pave the way for synthesized 2D SnSe thin films in the applications of hydrogen production.

Funder

National Natural Science Foundation of China

the Central Government Funds for Local Scientific and Technological Development

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3