Curvature-Insensitive Transparent Surface-Enhanced Raman Scattering Substrate Based on Large-Area Ag Nanoparticle-Coated Wrinkled Polystyrene/Polydimethylsiloxane Film for Reliable In Situ Detection

Author:

Sun Meng1,Huang Lili1,Wang Hongjun1,Zhang Zhaoyi1,Niu Huijuan1,Yang Zhenshan1,Li Hefu1ORCID

Affiliation:

1. Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252000, China

Abstract

Flexible and transparent surface-enhanced Raman scattering (SERS) substrates have attracted considerable attention for their ability to enable the direct in situ detection of analytes on curved surfaces. However, the curvature of an object can impact the signal enhancement of SERS during the measurement process. Herein, we propose a simple approach for fabricating a curvature-insensitive transparent SERS substrate by depositing silver nanoparticles (Ag NPs) onto a large-area wrinkled polystyrene/polydimethylsiloxane (Ag NP@W-PS/PDMS) bilayer film. Using rhodamine 6G (R6G) as a probe molecule, the optimized Ag NP@W-PS/PDMS film demonstrates a high analytical enhancement factor (AEF) of 4.83 × 105, excellent uniformity (RSD = 7.85%) and reproducibility (RSD = 3.09%), as well as superior mechanical flexibility. Additionally, in situ measurements of malachite green (MG) on objects with diverse curvatures, including fish, apple, and blueberry, are conducted using a portable Raman system, revealing a consistent SERS enhancement. Furthermore, a robust linear relationship (R2 ≥ 0.990) between Raman intensity and the logarithmic concentration of MG detected from these objects is achieved. These results demonstrate the tremendous potential of the developed curvature-insensitive SERS substrate as a point-of-care testing (POCT) platform for identifying analytes on irregular objects.

Funder

Natural Science Foundation of Shandong Province

Liaocheng University Start-up Fund for Doctoral Scientific Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3