Effects of Different Flotation Agents on the Nucleation and Growth of Potassium Chloride

Author:

Wang Guangle1,Bian Xiao1,Shang Zeren2ORCID,Dong Weibing1,Zhang Yi1,Wu Songgu2ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China

2. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Abstract

The flotation agent is an important collector in the production of potassium chloride and is brought into the crystallization stage with the reflux of the mother liquor. Octadecylamine Hydrochloride (ODA), 1-Dodecylamine Hydrochloride (DAH) and Sodium 1-dodecanesulfonate (SDS) were selected to study their effect on the nucleation of potassium chloride. Focused Beam Reflectance Measurement was used to collect the nucleation-induced periods of KCl in the presence of flotation agents at different supersaturations. Then, empirical equations, classical nucleation theory and growth mechanism equations were employed for data analysis. It was found that the presence of flotation agents increased the nucleation sequence m, and m(ODA) > m(SDS) > m(DAH) > m(H2O). In addition, the interfacial energy data obtained using classical nucleation theory suggest that the flotation agents used in our paper promoted the homogeneous nucleation of KCl (reduced from 5.3934 mJ·m−2 to 5.1434 mJ·m−2) and inhibited the heterogeneous nucleation of KCl (increased from 2.8054 mJ·m−2 to 3.6004 mJ·m−2). This investigation also revealed that the growth of potassium chloride was consistent with the 2D nucleation-mediated growth mechanism, and the addition of flotation agent did not change the growth mechanism of potassium chloride. Finally, the particle size distribution results were exactly consistent with the order of nucleation order m. The study of nucleation kinetics and growth mechanisms of different flotation agents on potassium chloride can provide guidance for optimizing the production process of potassium chloride and developing new flotation agents.

Funder

The Natural Science Foundation of Qinghai Province

Science and Technology Projects of Qinghai Minzu University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3