Application of Accelerated Predictive Stability Studies in Extemporaneously Compounded Formulations of Chlorhexidine to Assess the Shelf Life

Author:

González-González Olga1,Ballesteros M. Paloma12,Torrado Juan J.12ORCID,Serrano Dolores R.12ORCID

Affiliation:

1. Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Univsersidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain

2. Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain

Abstract

Industrially fabricated medicines have a well-defined shelf life supported by rigorous studies before their approval for commercialization. However, the shelf life of extemporaneous compounding topical formulations prepared at hospitals tends to be shorter, especially when no data are available to prove a longer stability period. Also, the storage conditions are unknown in many circumstances. Accelerated Predictive Stability (APS) studies have been shown to be a useful tool to predict in a faster and more accurate manner the chemical stability of extemporaneously compounded formulations requiring a minimum amount of formulation, thereby reducing the chemical drug waste per study. Shelf life will be allocated based on scientific data without compromising drug efficacy or safety. In this work, the APS approach was applied to the commercially available Cristalmina® (CR) and an extemporaneously compounded formulation of chlorhexidine (DCHX). A different degradation kinetic was found between DCHX and CR (Avrami vs. zero-order kinetics, respectively). This can explain the different shelf life described by the International Council for Harmonisation of Technical Requirements Registration Pharmaceuticals Human Use (ICH) conditions between both formulations. A predicted stability for the DCHX solution was obtained from the extrapolation of the degradation rate in long-term conditions from the Arrhenius equation. The estimated degradation from the Arrhenius equation for DCHX at 5 °C, 25 °C, and 30 °C at 365 days was 3.1%, 17.4%, and 25.9%, respectively. The predicted shelf life, in which the DCHX content was above 90%, was 26.67 months under refrigerated conditions and 5.75 and 2.24 months at 25 and 30 °C, respectively. Currently, the Spanish National Formulary recommends a shelf life of no longer than 3 months at room temperature for DCHX solution. Based on the predicted APS and confirmed by experimental long-term studies, we have demonstrated that the shelf life of DCHX extemporaneously compounded formulations could be prolonged by up to 6 months.

Funder

Complutense University of Madrid

Ministry of Science and Innovation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3