Abstract
We used a grand canonical Monte Carlo simulation to study the influence of impurities including water vapor, SO2, and O2 in the flue gas on the adsorption of CO2/N2 mixture in carbon nanotubes (CNTs) and carboxyl doped CNT arrays. In the presence of single impure gas, SO2 yielded the most inhibitions on CO2 adsorption, while the influence of water only occurred at low pressure limit (0.1 bar), where a one-dimensional chain of hydrogen-bonded molecules was formed. Further, O2 was found to hardly affect the adsorption and separation of CO2. With three impurities in flue gas, SO2 still played a major role to suppress the adsorption of CO2 by reducing the adsorption amount significantly. This was mainly because SO2 had a stronger interaction with carbon walls in comparison with CO2. The presence of three impurities in flue gas enhanced the adsorption complexity due to the interactions between different species. Modified by hydrophilic carboxyl groups, a large amount of H2O occupied the adsorption space outside the tube in the carbon nanotube arrays, and SO2 produced competitive adsorption for CO2 in the tube. Both of the two effects inhibited the adsorption of CO2, but improved the selectivity of CO2/N2, and the competition between the two determined the adsorption distribution of CO2 inside and outside the tube. In addition, it was found that (7, 7) CNT always maintained the best CO2/N2 adsorption and separation performance in the presence of impurity gas, for both the cases of single CNT and CNT array.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献