Physicochemical Properties of Inorganic and Hybrid Hydroxyapatite-Based Granules Modified with Citric Acid or Polyethylene Glycol

Author:

Cichoń Ewelina1ORCID,Kosowska Karolina2ORCID,Pańtak Piotr3ORCID,Czechowska Joanna P.3ORCID,Zima Aneta3ORCID,Ślósarczyk Anna3ORCID

Affiliation:

1. Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland

2. Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland

3. Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Krakow, Poland

Abstract

This study delves into the physicochemical properties of inorganic hydroxyapatite (HAp) and hybrid hydroxyapatite–chitosan (HAp-CTS) granules, also gold-enriched, which can be used as aggregates in biomicroconcrete-type materials. The impact of granules’ surface modifications with citric acid (CA) or polyethylene glycol (PEG) was assessed. Citric acid modification induced increased specific surface area and porosity in inorganic granules, contrasting with reduced parameters in hybrid granules. PEG modification resulted in a slight increase in specific surface area for inorganic granules and a substantial rise for hybrid granules with gold nanoparticles. Varied effects on open porosity were observed based on granule type. Microstructural analysis revealed increased roughness for inorganic granules post CA modification, while hybrid granules exhibited smoother surfaces. Novel biomicroconcretes, based on α-tricalcium phosphate (α-TCP) calcium phosphate cement and developed granules as aggregates within, were evaluated for compressive strength. Compressive strength assessments showcased significant enhancement with PEG modification, emphasizing its positive impact. Citric acid modification demonstrated variable effects, depending on granule composition. The incorporation of gold nanoparticles further enriched the multifaceted approach to enhancing calcium phosphate-based biomaterials for potential biomedical applications. This study demonstrates the pivotal role of surface modifications in tailoring the physicochemical properties of granules, paving the way for advanced biomicroconcretes with improved compressive strength for diverse biomedical applications.

Funder

National Science Centre

Excellence initiative—research university

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3