Spin Density Topology

Author:

Bruno GiovannaORCID,Macetti GiovanniORCID,Lo Presti LeonardoORCID,Gatti CarloORCID

Abstract

Despite its role in spin density functional theory and it being the basic observable for describing and understanding magnetic phenomena, few studies have appeared on the electron spin density subtleties thus far. A systematic full topological analysis of this function is lacking, seemingly in contrast to the blossoming in the last 20 years of many studies on the topological features of other scalar fields of chemical interest. We aim to fill this gap by unveiling the kind of information hidden in the spin density distribution that only its topology can disclose. The significance of the spin density critical points, the 18 different ways in which they can be realized and the peculiar topological constraints on their number and kind, arising from the presence of positive and negative spin density regions, is addressed. The notion of molecular spin graphs, spin maxima (minima) joining paths, spin basins and of their valence is introduced. We show that two kinds of structures are associated with a spin–polarized molecule: the usual one, defined through the electron density gradient, and the magnetic structure, defined through the spin density gradient and composed in general by at least two independent spin graphs, related to spin density maxima and minima. Several descriptors, such as the spin polarization index, are introduced to characterize the properties of spin density critical points and basins. The study on the general features of the spin density topology is followed by the specific example of the water molecule in the 3B1 triplet state, using spin density distributions of increasing accuracy.

Funder

Danish National Research Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference45 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3