Optimisation of the Flame Spheroidisation Process for the Rapid Manufacture of Fe3O4-Based Porous and Dense Microspheres

Author:

Molinar-Díaz Jesús1ORCID,Woodliffe John Luke1ORCID,Steer Elisabeth2,Morley Nicola A.3,Brown Paul D.12,Ahmed Ifty1ORCID

Affiliation:

1. Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK

2. Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK

3. Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK

Abstract

The rapid, single-stage, flame-spheroidisation process, as applied to varying Fe3O4:CaCO3 powder combinations, provides for the rapid production of a mixture of dense and porous ferromagnetic microspheres with homogeneous composition, high levels of interconnected porosity and microsphere size control. This study describes the production of dense (35–80 µm) and highly porous (125–180 µm) Ca2Fe2O5 ferromagnetic microspheres. Correlated backscattered electron imaging and mineral liberation analysis investigations provide insight into the microsphere formation mechanisms, as a function of Fe3O4/porogen mass ratios and gas flow settings. Optimised conditions for the processing of highly homogeneous Ca2Fe2O5 porous and dense microspheres are identified. Induction heating studies of the materials produced delivered a controlled temperature increase to 43.7 °C, indicating that these flame-spheroidised Ca2Fe2O5 ferromagnetic microspheres could be highly promising candidates for magnetic induced hyperthermia and other biomedical applications.

Funder

National Council of Science and Technology

Faculty of Engineering, University of Nottingham

Henry Royce Institute

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference59 articles.

1. Nanoparticles in biomedical applications;McNamara;Adv. Phys. X,2017

2. Thermal stability of magnetite (Fe3O4) nanoparticles;Ong;MRS Proc.,2011

3. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery;Kumar;Adv. Drug Deliv. Rev.,2011

4. Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine;Bae;Appl. Phys. Lett.,2006

5. Carboxylated PEG-Functionalized MnFe2O4 Nanocubes Synthesized in a Mixed Solvent: Morphology, Magnetic Properties, and Biomedical Applications;Kalaiselvan;ACS Omega,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3