Enhancing the Conductivity and Dielectric Characteristics of Bismuth Oxyiodide via Activated Carbon Doping

Author:

Khairy Mohamed12ORCID,Algethami Faisal K.1ORCID,Alotaibi Abdullah N.1,Almufarij Rasmiah S.3,Abdulkhair Babiker Y.14ORCID

Affiliation:

1. Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia

2. Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt

3. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4. Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan

Abstract

Activated carbon/BiOI nanocomposites were successfully synthesized through a simplistic method. The produced composites were then characterized using XRD, TEM, SEM-EDX, and XPS. The results showed that BiOI with a tetragonal crystal structure had been formed. The interaction between activated carbon and BiOI was confirmed via all the mentioned tools. The obtained nanocomposites’ electrical conductivity, dielectric properties, and Ac impedance were studied at 59 KHz−1.29 MHz. AC and dc conductivities were studied at temperatures between 303 and 573 K within the frequency range of 59 KHz–1.29 MHz. The 10% activated carbon/BiOI nanocomposite possessed dc and AC conductivity values of 5.56 × 10−4 and 2.86 × 10−4 Ω−1.cm−1, respectively, which were higher than BiOI and the other nanocomposites. Every sample exhibited increased electrical conductivity values as the temperature and frequency rose, suggesting that all samples had semiconducting behavior. The loss and dielectric constants (ε′ and ε″) also dropped as the frequency increased, leading to higher dielectric loss. The Nyquist plot unraveled single semicircle arcs and a decreased bulk resistance, indicating decreased grain boundary resistance. Consequently, the electrical characteristics of BiOI, 1C/BiOI, 5C/BiOI, and 10C/BiOI implied their applicability as dielectric absorbers, charge-stored capacitors, and high-frequency microwave devices.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3