Synthesis, Characterization and Anticancer Efficacy Studies of Iridium (III) Polypyridyl Complexes against Colon Cancer HCT116 Cells

Author:

Xie BiaoORCID,Wang Yi,Wang Di,Xue Xingkui,Nie YuqiangORCID

Abstract

In this paper, two new iridium (III) complexes, [Ir(ppy)2(ipbp)](PF6) (Ir1) (ppy = 2-phenylpyridine, ipbp = 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2yl)-4H-chromen-4-one) and [Ir(bzq)2(ipbp)](PF6) (Ir2) (bzq = benzo[h]quinolone), were synthesized and characterized. The cytotoxicity of the complexes against human colon cancer HCT116 and normal LO2 cells was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The complexes Ir1 and Ir2 show high cytotoxic efficacy toward HCT116 cells with a low IC50 value of 1.75 ± 0.10 and 6.12 ± 0.2 µM. Interestingly, Ir1 only kills cancer cells, not normal LO2 cells (IC50 > 200 µM). The inhibition of cell proliferation and migration were investigated by multiple tumor spheroid (3D) and wound healing experiments. The cellular uptake was explored under a fluorescence microscope. The intracellular reactive oxygen species (ROS), change of mitochondrial membrane potential, glutathione (GSH) and adenine nucleoside triphosphate (ATP) were studied. Apoptosis and cell cycle arrest were performed by flow cytometry. The results show that the complexes induce early apoptosis and inhibit the cell proliferation at the G0/G1 phase. Additionally, the apoptotic mechanism was researched by Western blot analysis. The results obtained demonstrate that the complexes cause apoptosis in HCT116 cells through ROS-mediated mitochondrial dysfunction and the inhibition of PI3K/AKT signaling pathways.

Funder

National Natural Science Foundation of China

Scientific Research Projects of Medical and Health Institution of Longhua District, Shenzhen

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3