Semi-Polycrystalline Polyaniline-Activated Carbon Composite for Supercapacitor Application

Author:

Mahato Neelima1ORCID,Sreekanth T. V. M.2,Yoo Kisoo2,Kim Jonghoon1ORCID

Affiliation:

1. Energy Storage and Conversion Laboratory, Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

2. Department of Mechanical Energy, Yeungnam University, Gyeongsangbukdo, Gyeongsansi 38541, Republic of Korea

Abstract

We report on the synthesis of activated carbon-semi-polycrystalline polyaniline (SPani-AC) composite material using in-situ oxidative polymerization of aniline on the carbon surface in an aqueous HCl medium at an elevated temperature of 60 °C. The electroactive polymeric composite material exhibits a uniformly distributed spindle-shaped morphology in scanning electron microscopy (SEM) and well-defined crystallographic lattices in the high-resolution transmission electron microscopy (TEM) images. The X-ray diffraction (XRD) spectrum reveals sharp peaks characteristic of crystalline polyaniline. The characteristic chemical properties of polyaniline are recorded using laser Raman spectroscopy. The cyclic voltammetry curves exhibit features of surface-redox pseudocapacitance. The specific capacitance calculated for the material is 507 F g−1 at the scan rate of 10 mV s−1. The symmetrical two-electrodes device exhibits a specific capacitance of 45 F g−1 at a current density of 5 A g−1. The capacitive retention calculated was found to be 96% up to 4500 continuous charge–discharge cycles and observed to be gradually declining at the end of 10,000 cycles. On the other hand, Coulombic efficiency was observed to be retained up to 85% until 4500 continuous charge–discharge cycles which declines up to 72% at the end of 10,000 cycles. The article also presents a detailed description of material synthesis, the formation of polyaniline (Pani) chains, and the role of material architecture in the performance as surface redox supercapacitor electrode.

Funder

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3