Exosomes as Novel Delivery Systems for Application in Traditional Chinese Medicine

Author:

Chen QiORCID,Wu Di,Wang YiORCID,Chen ZhongORCID

Abstract

Exosomes, as gifts of nature derived from various cell types with a size range from ~40 to 160 nm in diameter, have gained attention recently. They are composed of a lipid membrane bilayer structure containing different constituents, such as surface ligands and receptors, from the parental cells. Originating from a variety of sources, exosomes have the ability to participate in a diverse range of biological processes, including the regulation of cellular communication. On account of their ideal native structure and characteristics, exosomes are taken into account as drug delivery systems (DDSs). They can provide profound effects on conveying therapeutic agents with great advantages, including specific targeting, high biocompatibility, and non-toxicity. Further, they can also be considered to ameliorate natural compounds, the main constituents of traditional Chinese medicine (TCM), which are usually ignored due to the complexity of their structures, poor stability, and unclear mechanisms of action. This review summarizes the classification of exosomes as well as the research progress on exosome-based DDSs for the treatment of different diseases in TCM. Furthermore, this review discusses the advantages and challenges faced by exosomes to contribute to their further investigation and application.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference178 articles.

1. The biology, function, and biomedical applications of exosomes;Science,2020

2. Exosomes: Composition, biogenesis and function;Nat. Rev. Immunol.,2002

3. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics;Bioact. Mater.,2022

4. Tissue-derived extracellular vesicles in cancers and non-cancer diseases: Present and future;J. Extracell. Vesicles,2021

5. Research progress on the role of exosomes in obstructive sleep apnea-hypopnea syndrome-related atherosclerosis;Sleep Med. Rev.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3