Methylenedioxy Piperamide-Derived Compound D5 Regulates Inflammatory Cytokine Secretion in a Culture of Human Glial Cells

Author:

Shahbazi SajadORCID,Zakerali Tara

Abstract

Neuroinflammation is the cornerstone of most neuronal disorders, particularly neurodegenerative diseases. During the inflammatory process, various pro-inflammatory cytokines, chemokines, and enzymes—such as interleukin 1-β (IL1-β), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthases (iNOS), inhibitory kappa kinase (IKK), and inducible nitric oxide (NO)—are over-expressed in response to every stimulus. Methods: In the present study, we focused on the anti-neuroinflammatory efficacy of (2E,4E)-N,5-bis(benzo[d][1,3]dioxol-5-yl)penta-2,4-dienamide, encoded D5. We investigated the efficacy of D5 on the upstream and downstream products of inflammatory pathways in CHME3 and SVG cell lines corresponding to human microglia and astrocytes, respectively, using various in silico, in vitro, and in situ techniques. Results: The results showed that D5 significantly reduced the level of pro-inflammatory cytokines by up-regulating PPAR-γ expression and suppressing IKK-β, iNOS, NO production, and NF-κB activation in inflamed astrocytes (SVG) and microglia (CHME3) after 24 h of incubation. The data demonstrated remarkably higher efficacy of D5 compared to ASA (Aspirin) in reducing NF-κB-dependent neuroinflammation. Conclusions: We observed that the functional-group alteration had an extreme influence on the levels of druggability and the immunomodulatory properties of two analogs of piperamide, D5, and D4 ((2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-N-(4-(hydroxymethyl)phenyl)penta-2,4-dienamide)). The present study suggested D5 as a potential anti-neuroinflammatory agent for further in vitro, in vivo, and clinical investigations.

Funder

BRAINCITY

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The activity of cytokines in dental pulp;The Journal of Gene Medicine;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3