Abstract
Photocatalysis is a rapidly evolving area of research in modern organic synthesis. Among the traditional photocatalysts, metal-complexes based on ruthenium or iridium are the most common. Herein, we present the synthesis of two photoactive, ruthenium-based complexes bearing pyridine-quinoline or terpyridine ligands with extended aromatic conjugation. Our complexes were utilized in the atom transfer radical addition (ATRA) of haloalkanes to olefins, using bromoacetonitrile or bromotrichloromethane as the source of the alkyl group. The tailor-made ruthenium-based catalyst bearing the pyridine-quinoline bidentate ligand proved to be the best-performing photocatalyst, among a range of metal complexes and organocatalysts, efficiently catalyzing both reactions. These photocatalytic atom transfer protocols can be expanded into a broad scope of olefins. In both protocols, the photocatalytic reactions led to products in good to excellent isolated yields.
Funder
John S. Latsis Public Benefit Foundation
Hellenic Foundation for Research and Innovation
State Scholarships Foundation
National and Kapodistrian University of Athens
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献