Affiliation:
1. School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
Abstract
In recent years, with the development of batteries, ceramics, glass and other industries, the demand for lithium has increased rapidly. Due to the rich lithium resources in seawater and salt-lake brine, the question of how to selectively adsorb and separate lithium ions from such brine has attracted the attention and research of many scholars. The Li-ion sieve stands out from other methods thanks to its excellent special adsorption and separation performance. In this paper, mesoporous titanium dioxide and lithium hydroxide were prepared by hydrothermal reaction using bacterial cellulose as a biological template. After calcination at 600 °C, spinel lithium titanium oxide Li2TiO3 was formed. The precursor was eluted with HCl eluent to obtain H2TiO3. The lithium titanate were characterized by IR, SEM and X-ray diffraction. The adsorption properties of H2TiO3 were studied by adsorption pH, adsorption kinetics, adsorption isotherm and competitive adsorption. The results show that H2TiO3 has a single-layer chemical adsorption process, and has a good adsorption effect on lithium ions at pH 11.0, with a maximum adsorption capacity of 35.45 mg g−1. The lithium-ion sieve can selectively adsorb Li+, and its partition coefficient is 2242.548 mL g−1. It can be predicted that the lithium-ion sieve prepared by biological template will have broad application prospects.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献