Thermodynamic Consideration of the Solid Saponin Extract Drop–Air System

Author:

Grzywaczyk Adam1ORCID,Smułek Wojciech1ORCID,Kaczorek Ewa1ORCID,Zdziennicka Anna2ORCID,Jańczuk Bronisław2ORCID

Affiliation:

1. Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland

2. Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland

Abstract

The aim of this research was to elucidate the surface active properties of Saponaria officinalis (soapwort) extract containing the plant surfactants saponins. To this end, the advancing contact angle (θ) of water, formamide and diiodomethane on the glass, as well as θ of the aqueous solution of S. officinalis extract fractions on PTFE, PMMA and glass, were studied. Based on the obtained results, the wetting behaviour of saponins was considered with regard to the surface tension components and parameters of the solutions and solids. The investigations also involved the description of the θ isotherms, the dependences between the cosine of contact angle and/or the adhesion of the solution to the solid surfaces and solution surface tension, as well as the critical surface tension of PTFE, PMMA and glass wetting. These dependences were studied based on the saponin adsorption at the different interfaces, which was deduced from the dependence between the adhesion and surface tension of the solution, as well as using the Gibbs and Frumkin isotherm equations. This proved that the saponins are poor wetting agents and that the contact angle isotherm can be described by the exponential function of the second order as well as the Szyszkowski equation, but only for PTFE.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3