Development, Analytical Characterization, and Bioactivity Evaluation of Boswellia serrata Extract-Layered Double Hydroxide Hybrid Composites

Author:

Cometa Stefania1ORCID,Busto Francesco23ORCID,Castellaneta Andrea2ORCID,Cochis Andrea4ORCID,Najmi Ziba4ORCID,Rizzi Rosanna5ORCID,Losito Ilario26ORCID,De Giglio Elvira236ORCID

Affiliation:

1. Jaber Innovation s.r.l., Via Calcutta 8, 00144 Rome, Italy

2. Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy

3. INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy

4. Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy

5. Institute of Crystallography, National Research Council (CNR), Via G. Amendola, 122/o, 70126 Bari, Italy

6. SMART Inter-Department Research Center, University of Bari, Via Orabona 4, 70126 Bari, Italy

Abstract

Boswellia serrata Roxb. extract (BSE), rich in boswellic acids, is well known as a potent anti-inflammatory natural drug. However, due to its limited aqueous solubility, BSE inclusion into an appropriate carrier, capable of improving its release in the biological target, would be highly desirable. Starting with this requirement, new hybrid composites based on the inclusion of BSE in a lamellar solid layered double hydroxide (LDH), i.e., magnesium aluminum carbonate, were developed and characterized in the present work. The adopted LDH exhibited a layered crystal structure, comprising positively charged hydroxide layers and interlayers composed of carbonate anions and water molecules; thus, it was expected to embed negatively charged boswellic acids. In the present case, a calcination process was also adopted on the LDH to increase organic acid loading, based on the replacement of the original inorganic anions. An accurate investigation was carried out by TGA, PXRD, FT-IR/ATR, XPS, SEM, and LC-MS to ascertain the nature, interaction, and quantification of the active molecules of the vegetal extract loaded in the developed hybrid materials. As a result, the significant disruption of the original layered structure was observed in the LDH subjected to calcination (LDHc), and this material was able to include a higher amount of organic acids when its composite with BSE was prepared. However, in vitro tests on the composites’ bioactivity, expressed in terms of antimicrobial and anti-inflammatory activity, evidenced LDH–BSE as a better material compared to BSE and to LDHc–BSE, thus suggesting that, although the embedded organic acid amount was lower, they could be more available since they were not firmly bound to the clay. The composite was able to significantly decrease the number of viable pathogens such as Escherichia coli and Staphylococcus aureus, as well as the internalization of toxic active species into human cells imposing oxidative stress, in comparison to the BSE.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3