Thiocarbonyl Derivatives of Natural Chlorins: Synthesis Using Lawesson’s Reagent and a Study of Their Properties

Author:

Pogorilyy Viktor1ORCID,Ostroverkhov Petr1ORCID,Efimova Valeria1,Plotnikova Ekaterina12ORCID,Bezborodova Olga12ORCID,Diachkova Ekaterina34ORCID,Vasil’ev Yuriy4,Pankratov Andrei12,Grin Mikhail1

Affiliation:

1. Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia

2. P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia

3. Department of Oral Surgery, Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), str Trubetskaya 8\2, 119435 Moscow, Russia

4. Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), str Trubetskaya 8\2, 119435 Moscow, Russia

Abstract

The development of sulfur-containing pharmaceutical compounds is important in the advancement of medicinal chemistry. Photosensitizers (PS) that acquire new properties upon incorporation of sulfur-containing groups or individual sulfur atoms into their structure are not neglected, either. In this work, a synthesis of sulfur-containing derivatives of natural chlorophyll a using Lawesson’s reagent was optimized. Thiocarbonyl chlorins were shown to have a significant bathochromic shift in the absorption and fluorescence bands. The feasibility of functionalizing the thiocarbonyl group at the macrocycle periphery by formation of a Pt(II) metal complex in the chemotherapeutic agent cisplatin was shown. The chemical stability of the resulting conjugate in aqueous solution was studied, and it was found to possess a high cytotoxic activity against sarcoma S37 tumor cells that results from the combined photodynamic and chemotherapeutic effect on these cells.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3