Design, Synthesis, Fungicidal and Insecticidal Activities of Novel Diamide Compounds Combining Pyrazolyl and Polyfluoro-Substituted Phenyl into Alanine or 2-Aminobutyric Acid Skeletons

Author:

Xu Zhi-Yuan,Feng Tong,Liu Qing,Li Hui-Ting,Wei Wei,Shi Rong-Chuan,Cao Yi-Ming,Liu Shang-ZhongORCID

Abstract

Thirty novel diamide compounds combining pyrazolyl and polyfluoro-substituted phenyl groups into alanine or 2-aminobutyric acid skeletons were designed and synthesized with pyflubumide as the lead compound to develop potent and environmentally friendly pesticides. The preliminary bioassay results indicated that the new compounds containing the para-hexa/heptafluoroisopropylphenyl moiety exhibit fungicidal, insecticidal, and acaricidal activities. This is the first time that the para-hexa/heptafluoroisopropylphenyl group is a key fragment of the fungicidal activity of new N-phenyl amide compounds. Most of the target compounds exhibited moderate to good insecticidal activity against Aphis craccivora at a concentration of 400 μg/mL, and some showed moderate activity at a concentration of 200 μg/mL; in particular, compounds I-4, II-a-10, and III-26 displayed higher than 78% lethal rates at 200 μg/mL. Compound II-a-14 exhibited a 61.1% inhibition at 200 μg/mL for Tetranychus cinnabarinus. In addition, some of the target compounds exhibited good insecticidal activities against Plutella xylostella at a concentration of 200 μg/mL; the mortalities of compounds I-1, and II-a-15 were 76.7% and 70.0%, respectively. Preliminary analysis of the structure–activity relationship (SAR) indicated that the insecticidal and acaricidal activities varied significantly depending on the type of substituent and substitution pattern. The fungicidal activity results showed that compounds I-1, II-a-10, II-a-17, and III-26 exhibited good antifungal effects. Enzymatic activity experiments and in vivo efficacy of compound II-a-10 were conducted and discussed.

Funder

National Key R&D Program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference51 articles.

1. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi;Zhang;Comput. Struct. Biotechnol. J.,2020

2. Ray, D.K., Mueller, N.D., West, P.C., and Foley, J.A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS One, 8.

3. (2022, November 01). FAO Crop and Livestock Statistics. Available online: https://www.fao.org/faostat/zh/#data/QCL.

4. Research and development of crop protection machinery and chemical application technology in China;He;Chin. J. Pestic. Sci.,2019

5. Research progresses on the metabolic mechanisms of organophosphate insecticides;Wang;Chin. J. Pestic. Sci.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3