The Effect of Nitrogen Functional Groups on Pb0, PbO, and PbCl2 Adsorption over a Carbonaceous Surface

Author:

Wang Liang1,Wen Huaizhou2,Guo Lei1,Liang Ancheng3,Liu Tingan1,Zhao Dongxu3,Dong Lu4ORCID

Affiliation:

1. China Power Hua Chuang (Suzhou) Electricity Technology Research Company Co., Ltd., Suzhou 215125, China

2. Xi’an Thermal Power Research Institute Co., Ltd., Xi’an 740032, China

3. Haikou China Power Environmental Protection Power Generation Co., Ltd., Haikou 570106, China

4. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Lead (Pb) pollution, especially from the incineration of municipal solid waste (MSW), poses a significant threat to the environment. Among all the effective methods, activated carbon (AC) injection serves as an effective approach for lead removal from flue gas, while the modification of ACs emerges as a crucial pathway for enhancing Pb adsorption capacities. Density functional theory (DFT) is employed in this study to investigate the mechanisms underlying the enhanced adsorption of Pb species (Pb0, PbO, and PbCl2) on nitrogen-functionalized carbonaceous surfaces. The results show that nitrogen-containing groups substantially enhance lead adsorption capacity, with adsorption energies ranging from −526.18 to −288.31 kJ/mol on nitrogen-decorated carbonaceous surfaces, much higher than those on unmodified surfaces (−310.35 to −260.96 kJ/mol). Additionally, electrostatic potential and density-of-states analyses evidence that pyridinic nitrogen atoms remarkably expand charge distribution and strengthen orbital hybridization, thereby augmenting lead capture. This research elucidates the role of nitrogen-containing functional groups in lead adsorption, offering valuable insights for the development of highly efficient biomass-derived activated carbon sorbents for lead removal.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Hubei Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3