Influence of Mutations of Conserved Arginines on Neuropeptide Binding in the DPP III Active Site

Author:

Tomić Antonija1,Karačić Zrinka1,Tomić Sanja1ORCID

Affiliation:

1. Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia

Abstract

Dipeptidyl peptidase III (DPP III), a zinc exopeptidase, is involved in the final steps of intercellular protein degradation and has a marked affinity for opioid peptides such as enkephalins and endomorphins. Recently, we characterized a number of neuropeptides as potential substrates and inhibitors of human DPP III and provided an explanation for their differential behavior. These studies prompted us to investigate the influence of the conserved R399 and R669 on neuropeptides binding to DPP III. Measuring kinetic parameters in inhibitory assays, we found that mutation of R669 to Ala or Met significantly reduced the inhibitory properties of the slow substrates tynorphin and valorphin, whereas the effects on binding of the good substrates Arg2-2NA and Leu-enkephalin were small. Molecular dynamics simulations of wild-type (WT) and mutant DPP III complexes with Leu-enkephalin, tynorphin, valorphin, and Arg2-2NA in conjunction with calculations of binding free energies revealed that the lower inhibitory potency of slow substrates in the R669A mutant can be explained by the lower binding affinity of tynorphin and the higher propensity of valorphin to hydrolyze in the mutant than in WT. The R399A mutation was shown to affect the binding and/or hydrolysis of both good and slow substrates, with the effects on Leu-enkephalin being the most pronounced.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3