Glutamate Dehydrogenase Functions in Glutamic Acid Metabolism and Stress Resistance in Pyropia haitanensis

Author:

Li Shuang,Shao Zhanru,Lu Chang,Yao Jianting,Zhou Yongdong,Duan DelinORCID

Abstract

Pyropia haitanensis is an important laver species in China. Its quality traits are closely related to the content of glutamic acid. Glutamate dehydrogenase (GDH) is a crucial enzyme in the glutamic acid metabolism. In this study, two GDH genes from P. haitanensis, PhGDH1 and PhGDH2, were cloned and successfully expressed in Escherichia coli. The in vitro enzyme activity assay demonstrated that the catalytic activity of PhGDHs is mainly in the direction of ammonium assimilation. The measured Km values of PhGDH1 for NADH, (NH4)2SO4, and α-oxoglutarate were 0.12, 4.99, and 0.16 mM, respectively, while the corresponding Km values of PhGDH2 were 0.02, 3.98, and 0.104 mM, respectively. Site-directed mutagenesis results showed that Gly193 and Thr361 were important catalytic residues for PhGDH2. Moreover, expression levels of both PhGDHs were significantly increased under abiotic stresses. These results suggest that PhGDHs can convert α-oxoglutarate to glutamic acid, and enhance the flavor and stress resistance of P. haitanensis.

Funder

Zhanru Shao

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3