Effects of Modified Processing Methods on Structural Changes of Black Soybean Protein Isolate

Author:

Zhang Yinglei,Yin Yanyang,Lu Shuwen,Yao Xinmiao,Zheng Xianzhe,Zhao Rui,Li Zhebin,Shen Huifang,Zhang Shouwen

Abstract

To explore better methods of natural protein modification for black soybean, comparisons among the effects of different modified methods on structural changes of the modified products of black soybean protein isolate (BSPI) were carried out in this study. The modified products used in this study included enzymatic crossing-link black soybean protein isolate (ECBSPI), wet heating treatment glycosylation black soybean protein isolate (WHTGBSPI) and especially enzymatic glycosylation black soybean protein isolate catalyzed by transglutaminase (EGBSPI). The effects of the modification methods on structural changes were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), amino acid content and circular dichroism (CD) analysis. Moreover, the processing properties changes caused by structural changes of BSPI were detected by thermogravimetric analysis, particle size analysis, zeta-potential, surface hydrophobicity, solubility, emulsification, gelation, and rheological properties. The results show that the modified BSPI products were protein polymers, and among them, EGBSP and WHTGBSPI are covalently bonded glycation products. Products modified by Maillard reactions and transglutaminase (TG) display partly destroyed α-helix and β-sheet structures that form more open secondary BSPI structures. For ECBSPI, the proportion of irregular crimp structure reduces to form a high order secondary structure. All the modified products form fine aggregations in dispersion, except WHTGBSPI has most negative zeta-potential and least molecular stability due to the hydrophobic amino acids embedded in the protein molecules. The zeta-potentials of BSPI, ECBSPI, WHTGBSPI and EGBSPI are respectively −21.5, −23.8, −18.1 and −20.2 mV. The surface hydrophobicity of EGBSPI (5.07 ± 0.07) and WHTGBSPI (7.02 ± 0.05) decrease, while the surface hydrophobicity of ECBSPI (19.5 ± 0.06) increases. The solubility and rheological properties of EGBSPI, ECBSPI and WHTGBSPI after modification are all better than those of BSPI, especially EGBSPI. Emulsification of EGBSPI and WHTGBSPI increase (by 24.5% and 12.2%, respectively) while ECBSPI decrease (by 17.0), and there is similar emulsion stability trend. Moreover, the properties of ECBSPI increase except cohesiveness compared to BSPI. In conclusion, as a safe and efficient method for natural protein modification, enzymatic glycosylation catalyzed by TG has great potential in improving food processing characteristics.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3