A Simple Elimination of the Thermal Convection Effect in NMR Diffusiometry Experiments

Author:

Nyul DávidORCID,Novák Levente,Kéri MónikaORCID,Bányai István

Abstract

Thermal convection is always present when the temperature of an NMR experiment is different from the ambient one. Most often, it falsifies the value of the diffusion coefficient determined by NMR diffusiometry using a PGSE NMR experiment. In spite of common belief, it acts not only at higher temperatures but also at temperatures lower than in the laboratory. Sodium alkyl-sulfate monomers and micelles in D2O solvent were used as model molecules measured at T = 319 K in order to show that thermal convection sometimes remains hidden in experiments. In this paper, we demonstrate that the increase in apparent diffusion coefficient with increasing diffusion time is a definite indicator of thermal convection. Extrapolation to zero diffusion time can also be used to obtain the real diffusion coefficient, likewise applying the less sensitive pulse sequences designed for flow compensation or the expensive hardware, e.g., sapphire or Shigemi NMR tubes, to decrease the temperature gradient. Further, we show experiments illustrating the effect of a long diffusion time in which the periodic changes of the echo intensity with gradient strength appear as predicted by theories.

Funder

National Research, Development and Innovation Office of Hungary

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference37 articles.

1. Translational Dynamics and Magnetic Resonance;Callaghan,2011

2. NMR: Tomography, Diffusometry, Relaxometry;Kimmich,1997

3. Thermal Convection Currents in NMR: Flow Profiles and Implications for Coherence Pathway Selection

4. Fluid Mechanics;Landau,1987

5. Temperature Imaging by1H NMR and Suppression of Convection in NMR Probes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3