Abstract
The results presented in this paper confirm the beneficial role of an easy-to-use and low-cost thin-layer chromatography (TLC) technique for describing the retention behavior and the experimental lipophilicity parameter of two biguanide derivatives, metformin and phenformin, in both normal-phase (NP) and reversed-phase (RP) TLC systems. The retention parameters (RF, RM) obtained under different chromatographic conditions, i.e., various stationary and mobile phases in the NP-TLC and RP-TLC systems, were used to determine the lipophilicity parameter (RMW) of metformin and phenformin. This study confirms the poor lipophilicity of both metformin and phenformin. It can be stated that the optimization of chromatographic conditions, i.e., the kind of stationary phase and the composition of mobile phase, was needed to obtain the reliable value of the chromatographic lipophilicity parameter (RMW) in this study. The fewer differences in the RMW values of both biguanide derivatives were ensured by the RP-TLC system composed of RP2, RP18, and RP18W plates and the mixture composed of methanol, propan-1-ol, and acetonitrile as an organic modifier compared to the NP-TLC analysis. The new calculation procedures for logP of drugs based on topological indices 0χν, 0χ, 1χν, M, and Mν may be a certain alternative to other algorithms as well as the TLC procedure performed under optimized chromatographic conditions. The knowledge of different lipophilicity parameters of the studied biguanides can be useful in the future design of novel and more therapeutically effective metformin and phenformin formulations for antidiabetic and possible anticancer treatment. Moreover, the topological indices presented in this work may be further used in the QSAR study of the examined biguanides.
Funder
Medical University of Silesia project in 2020
Slovak Research and Development Agency
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Reference55 articles.
1. Lipophilicity, methods of determination and its role in biological effect of chemical substances;Jozwiak;Wiad. Chem.,2001
2. Lipophilicity—Methods of determination and its role in medicinal chemistry;Rutkowska;Acta Pol. Pharm. Drug Res.,2013
3. Thin layer chromatography in drug discovery process
4. State of the art and prospects of methods for determination of lipophilicity of chemical compounds
5. Thin-layer chromatography in medicinal chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献