An Optimized Method for Evaluating the Preparation of High-Quality Fuel from Various Types of Biomass through Torrefaction

Author:

Guo Shuai12ORCID,Deng Xiaoyan1,Zhao Deng3,Zhu Shujun2,Qu Hongwei1,Li Xingcan1ORCID,Zhao Yan4

Affiliation:

1. School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China

2. Shanxi Key Laboratory of Coal Flexible Combustion and Thermal Conversion, Datong 037000, China

3. College of Vehicles and Energy, Yanshan University, Qinhuangdao 066000, China

4. Shenyang Academy of Environmental Sciences, Shenyang 110167, China

Abstract

The pretreatment for torrefaction impacts the performance of biomass fuels and operational costs. Given their diversity, it is crucial to determine the optimal torrefaction conditions for different types of biomass. In this study, three typical solid biofuels, corn stover (CS), agaric fungus bran (AFB), and spent coffee grounds (SCGs), were prepared using fluidized bed torrefaction. The thermal stability of different fuels was extensively discussed and a novel comprehensive fuel index, “displacement level”, was analyzed. The functional groups, pore structures, and microstructural differences between the three raw materials and the optimally torrefied biochar were thoroughly characterized. Finally, the biomass fuel consumption for household heating and water supply was calculated. The results showed that the optimal torrefaction temperatures for CS, AFB, and SCGs were 240, 280, and 280 °C, respectively, with comprehensive quality rankings of the optimal torrefied biochar of AFB (260) > SCG (252) > CS (248). Additionally, the economic costs of the optimally torrefied biochar were reduced by 7.03–19.32%. The results indicated that the displacement level is an index universally applicable to the preparation of solid fuels through biomass torrefaction. AFB is the most suitable solid fuel to be upgraded through torrefaction and has the potential to replace coal.

Funder

National Natural Science Funds for Young Scholars of China

Liaoning Provincial Livelihood Science and Technology Planning Project

Foundation of Shanxi Key Laboratory of Coal Flexible Combustion and Thermal Conversion

Hebei Natural Science Foundation

Science and Technology Project of the Hebe Education Department

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3