Affiliation:
1. College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
2. College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
Abstract
In order to separate the colloidal in high-turbidity water, a kind of magnetic composite (Fe3O4/HBPN) was prepared via the functional assembly of Fe3O4 and an amino-terminal hyperbranched polymer (HBPN). The physical and chemical characteristics of Fe3O4@HBPN were investigated by different means. The Fourier Transform infrared spectroscopy (FTIR) spectra showed that the characteristic absorption peaks positioned at 1110 cm−1, 1468 cm−1, 1570 cm−1 and 1641 cm−1 were ascribed to C–N, H–N–C, N–H and C=O bonds, respectively. The shape and size of Fe3O4/HBPN showed a different and uneven distribution; the particles clumped together and were coated with an oil-like film. Energy-dispersive spectroscopy (EDS) displayed that the main elements of Fe3O4/HBPN were C, N, O, and Fe. The superparamagnetic properties and good magnetic response were revealed by vibrating sample magnetometer (VSM) analysis. The characteristic diffraction peaks of Fe3O4/HBPN were observed at 2θ = 30.01 (220), 35.70 (311), 43.01 (400), 56.82 (511), and 62.32 (440), which indicated that the intrinsic phase of magnetite remained. The zeta potential measurement indicated that the surface charge of Fe3O4/HBPN was positive in the pH range 4–10. The mass loss of Fe3O4/HBPN in thermogravimetric analysis (TGA) proved thermal decomposition. The –C–NH2 or –C–NH perssad of HBPN were linked and loaded with Fe3O4 particles by the N–O bonds. When the Fe3O4/HBPN dosage was 2.5 mg/L, pH = 4–5, the kaolin concentration of 1.0 g/L and the magnetic field of 3800 G were the preferred reaction conditions. In addition, a removal efficiency of at least 86% was reached for the actual water treatment. Fe3O4/HBPN was recycled after the first application and reused five times. The recycling efficiency and removal efficiency both showed no significant difference five times (p > 0.05), and the values were between 84.8% and 86.9%.
Funder
Natural Science Foundation of Henan Province, China
National Natural Science Foundation of China
Guangdong Basic and Applied Basic Research Foundation
Student Research and Training Program of Henan University of Science and Technology
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献