Preparation and Molecular Structural Characterization of Fulvic Acid Extracted from Different Types of Peat

Author:

Wu Di1,Lu Yanan1,Ma Litong123,Cheng Jianguo123,Wang Xiaoxia123

Affiliation:

1. School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

2. Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Baotou 014010, China

3. Laboratory of Low Rank Coal Carbon Neutralization, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

Humic acid is a type of polymeric, organic weak acid mixture with a core aromatic structure and main-component oxygen-containing functional group. Fulvic acid is a type of humic substance that can be dissolved in acid, alkali, or water. This study discusses the influence of different peptides on the molecular structure of fulvic acid, which was extracted from herbaceous, woody, and mossy peats using alkaline dissolution and acid precipitation methods. Analyses using infrared, UV-Vis, 13C-NMR, and X-ray photoelectron spectroscopies, as well as X-ray diffraction (XRD), were conducted to compare the effects of different peat types on the content and molecular structure of fulvic acid. The woody peat fulvic acid content was the highest among all peat fulvic acids (0.38%). However, the yield of fulvic acid from herbaceous peat was the highest (2.53%). Herbaceous peat fulvic acid contains significant quantities of carbonyl, amino, methylene, carboxyl, and phenolic hydroxyl groups and ether bonds. Woody peat fulvic acid contains carbonyl and methoxy groups, benzenes, aromatic carbons, aromatic ethers, and phenols. The degree of aromatization of woody peat fulvic acid was the highest. Mossy peat fulvic acid contains high levels of hydroxy, methyl, methylene, and phenol groups and aromatic ethers. The structural differences in fulvic acids in the different types of peat were primarily manifested in the content of functional groups, with little influence from the types of functional groups. XRD analysis of the different peats revealed that their structures all comprised benzene rings. However, mossy peat contained more C=O and –COOH groups, whereas herbaceous peat contained more C–O groups.

Funder

National Natural Science Foundation of China

Inner Mongolia University of Science & Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3