Controlling Particle Morphology and Pore Size in the Synthesis of Ordered Mesoporous Materials

Author:

Awoke Yaregal,Chebude Yonas,Díaz IsabelORCID

Abstract

Ordered mesoporous materials have attracted considerable attention due to their potential applications in catalysis, adsorption, and separation technologies, as well as biomedical applications. In the present manuscript, we aim at a rational design to obtain the desired surface functionality (Ti and/or hydrophobic groups) while obtaining short channels (short diffusion paths) and large pore size (>10 nm). Santa Barbara Amorphous material SBA-15 and periodic mesoporous organosilica PMO materials are synthesized using Pluronic PE 10400 (P104) surfactant under mild acidic conditions to obtain hexagonal platelet-like particles with very short mesochannels (300–450 nm). The use of expanders, such as 1, 3, 5-trimethylbenzene (TMB) and 1, 3, 5-triisopropylbenzene (TIPB) were tested in order to increase the pore size. TMB yielded in the formation of vesicles in all the syntheses attempted, whereas P104 combined with TIPB resulted both in expanded (E) E-SBA-15 and E-PMO with 12.3 nm pore size short channel particles in both cases. Furthermore, the synthesis method was expanded to the incorporation of small amount of Ti via co-condensation method using titanocene as titanium source. As a result, Ti-E-SBA-15 was obtained with 15.5 nm pore size and isolated Ti-sites maintaining platelet hexagonal morphology. Ti-PMO was obtained with 7.8 nm and short channels, although the pore size under the tried synthesis conditions could not be expanded further without losing the structural ordering.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3