Abstract
Silica-supported metallic species have emerged as valuable green-chemistry catalysts because their high efficiency enables a wide range of applications, even at industrial scales. As a consequence, the preparation of these systems needs to be finely controlled in order to achieve the desired activity. The present work presents a detailed investigation of an ultrasound-promoted synthetic protocol for the grafting of β-cyclodextrin (β-CD) onto silica. Truly, ultrasound irradiation has emerged as a fast technique for promoting efficient derivatization of a silica surface with organic moieties at low temperature. Three different β-CD silica-grafted derivatives have been obtained, and the ability of β-CD to direct and bind Cu when CD is bonded to silica has been studied. A detailed characterization has been performed using TGA, phenolphthalein titration, FT-IR, diffuse reflectance (DR), DR UV-Vis, as well as the inductively-coupled plasma (ICP) of the β-CD silica-grafted systems and the relative Cu-supported catalysts. Spectroscopic characterization monitored the different steps of the reaction, highlighting qualitative differences in the properties of amino-derivatized precursors and final products. In order to ensure that the Cu-β-CD silica catalyst is efficient and robust, its applicability in Cu(II)-catalyzed alkyne azide reactions in the absence of a reducing agent has been explored. The presence of β-CD and an amino spacer has been shown to be crucial for the reactivity of Cu(II), when supported.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献