Integrated Adsorption–Photodegradation of Organic Pollutants by Carbon Xerogel/Titania Composites

Author:

Safri AnamORCID,Fletcher Ashleigh JaneORCID,Safri Ramsha,Rasheed Hifza

Abstract

Recent studies on the removal of pollutants via adsorption include the use of carbon-based adsorbents, due to their high porosity and large surface area; however, such materials lack photoactive properties. This study evaluates the synergistic effect of integrated mesoporous carbon xerogel (derived from resorcinol formaldehyde) and titanium dioxide (TiO2) for combined adsorption and photodegradation application. The complex formed between carbon xerogel and TiO2 phase was investigated through FTIR, proving the presence of a Ti-O–C chemical linkage. The physicochemical properties of the synthesised adsorbent–photocatalyst were probed using FESEM, BET analysis and UV–Vis analysis. The kinetics, equilibrium adsorption, effect of pH, and effect of adsorbent dosage were investigated. The expansion of the absorbance range to the visible range was verified, and the corresponding band gap evaluated. These properties enabled a visible light response when the system was exposed to visible light post adsorption. Hence, an assistive adsorption–photodegradation phenomenon was successfully executed. The adsorption performance exhibited 85% dye degradation which improved to 99% following photodegradation. Further experiments showed the reduction of microorganisms under visible light, where no microbial colonies were observed after treatment, indicating the potential application of these composite materials.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference48 articles.

1. Emerging nano-structured innovative materials as adsorbents in wastewater treatment;Manikandan;Bioresour. Technol.,2021

2. Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants;Zhang;Microporous Mesoporous Mater.,2018

3. Study on TiO2-mediated photocatalytic degradation of methylene blue;Lakshmi;J. Photochem. Photobiol. A Chem.,1995

4. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend;Kumari;Sustain. Mater. Technol.,2019

5. Second-generation photocatalytic materials: Anion-doped TiO2;Wang;J. Phys. Condens. Matter,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3