Microbial Transformation of the Sesquiterpene Lactone, Vulgarin, by Aspergillus niger

Author:

ElGamal Reem A.1,Galala Amal A.1,Abdel-Kader Maged S.23ORCID,Badria Farid A.1ORCID,Soliman Amal F.1ORCID

Affiliation:

1. Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, El Mansoura 35516, Egypt

2. Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

3. Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt

Abstract

The biotransformation of vulgarin (1), an eudesmanolides-type sesquiterpene lactone obtained from Artemisia judaica, by the microorganism, Aspergillus niger, was carried out to give three more polar metabolites; 1-epi-tetrahydrovulgarin (1α,4α-dihydroxy-5αH,6,11βH-eudesman-6,12-olide (2), 20% yield, 1α,4α-dihydroxyeudesm-2-en-5αH,6,11βH-6,12-olide (3a), 10% yield, and C-1 epimeric mixture (3a, b), 4% yield, in a ratio of 4:1, 3a/3b. The structures of vulgarin and its metabolites were elucidated by 1 and 2D NMR spectroscopy in conjunction with HRESIMS. Metabolites (3a) and (3b) are epimers, and they are reported here for the first time as new metabolites obtained by biotransformation by selective reduction at C-1. Vulgarin and its metabolites were evaluated as anti-inflammatory agents using the human cyclooxygenase (COX) inhibitory assay. The obtained data showed that (1) exhibited a good preferential inhibitory activity towards COX-2 (IC50 = 07.21 ± 0.10) and had a moderate effect on COX-1 (IC50 = 11.32 ± 0.24). Meanwhile, its metabolite (3a) retained a selective inhibitory activity against COX-1 (IC50 = 15.70 ± 0.51). In conclusion, the results of this study revealed the necessity of the presence α, β unsaturated carbonyl group in (1) for better COX-2 inhibitory activity. On the other hand, the selectivity of (1) as COX-1 inhibitor may be enhanced via the reduction of C-1 carbonyl group.

Funder

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3