A New Approach for Controlling Mesoporosity in Activated Carbon by the Consecutive Process of Air Oxidation, Thermal Destruction of Surface Functional Groups, and Carbon Activation (the OTA Method)

Author:

Lawtae PanuwatORCID,Tangsathitkulchai Chaiyot

Abstract

A new and simple method, based entirely on a physical approach, was proposed to produce activated carbon from longan fruit seed with controlled mesoporosity. This method, referred to as the OTA, consisted of three consecutive steps of (1) air oxidation of initial microporous activated carbon of about 30% char burn-off to introduce oxygen surface functional groups, (2) the thermal destruction of the functional groups by heating the oxidized carbon in a nitrogen atmosphere at a high temperature to increase the surface reactivity due to increased surface defects by bond disruption, and (3) the final reactivation of the resulting carbon in carbon dioxide. The formation of mesopores was achieved through the enlargement of the original micropores after heat treatment via the CO2 gasification, and at the same time new micropores were also produced, resulting in a larger increase in the percentage of mesopore volume and the total specific surface area, in comparison with the production of activated carbon by the conventional two-step activation method using the same activation time and temperature. For the activation temperatures of 850 and 900 °C and the activation time of up to 240 min, it was found that the porous properties of activated carbon increased with the increase in activation time and temperature for both preparation methods. A maximum volume of mesopores of 0.474 cm3/g, which accounts for 44.1% of the total pore volume, and a maximum BET surface area of 1773 m2/g was achieved using three cycles of the OTA method at the activation temperature of 850 °C and 60 min activation time for each preparation cycle. The two-step activation method yielded activated carbon with a maximum mesopore volume of 0.270 cm3/g (33.0% of total pore volume) and surface area of 1499 m2/g when the activation temperature of 900 °C and a comparable activation time of 240 min were employed. Production of activated carbon by the OTA method is superior to the two-step activation method for better and more precise control of mesopore development.

Funder

The Royal Golden Jubilee (RGJ) Ph.D. Program, Batch no. 20, The National Re-search Council of Thailand (NRCT).

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3