In-Silico Screening and Molecular Dynamics Simulation of Drug Bank Experimental Compounds against SARS-CoV-2

Author:

Alturki Norah A.,Mashraqi Mutaib M.ORCID,Alzamami AhmadORCID,Alghamdi Youssef S.ORCID,Alharthi Afaf A.ORCID,Asiri Saeed A.,Ahmad ShabanORCID,Alshamrani Saleh

Abstract

For the last few years, the world has been going through a difficult time, and the reason behind this is severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), one of the significant members of the Coronaviridae family. The major research groups have shifted their focus towards finding a vaccine and drugs against SARS-CoV-2 to reduce the infection rate and save the life of human beings. Even the WHO has permitted using certain vaccines for an emergency attempt to cut the infection curve down. However, the virus has a great sense of mutation, and the vaccine’s effectiveness remains questionable. No natural medicine is available at the community level to cure the patients for now. In this study, we have screened the vast library of experimental drugs of Drug Bank with Schrodinger’s maestro by using three algorithms: high-throughput virtual screening (HTVS), standard precision, and extra precise docking followed by Molecular Mechanics/Generalized Born Surface Area (MMGBSA). We have identified 3-(7-diaminomethyl-naphthalen-2-YL)-propionic acid ethyl ester and Thymidine-5′-thiophosphate as potent inhibitors against the SARS-CoV-2, and both drugs performed impeccably and showed stability during the 100 ns molecular dynamics simulation. Both of the drugs are among the category of small molecules and have an acceptable range of ADME properties. They can be used after their validation in in-vitro and in-vivo conditions.

Funder

Taif University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference28 articles.

1. Molecular dynamics simulation and docking studies reveal NF-κB as a promising therapeutic drug target for COVID-19;Ahmad;Bioinformation,2021

2. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update

3. Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis,2021

4. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19;Struyf;Cochrane Database Syst. Rev.,2021

5. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3