Influence of Molecular Orbitals on Magnetic Properties of FeO2Hx

Author:

Shorikov Alexey O.ORCID,Skornyakov Sergey L.ORCID,Anisimov Vladimir I.ORCID,Streltsov Sergey V.ORCID,Poteryaev Alexander I.ORCID

Abstract

Recent discoveries of various novel iron oxides and hydrides, which become stable at very high pressure and temperature, are extremely important for geoscience. In this paper, we report the results of an investigation on the electronic structure and magnetic properties of the hydride FeO 2 H x , using density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations. An increase in the hydrogen concentration resulted in the destruction of dimeric oxygen pairs and, hence, a specific band structure of FeO 2 with strongly hybridized Fe- t 2 g -O- p z anti-bonding molecular orbitals, which led to a metallic state with the Fe ions at nearly 3+. Increasing the H concentration resulted in effective mass enhancement growth which indicated an increase in the magnetic moment localization. The calculated static momentum-resolved spin susceptibility demonstrated that an incommensurate antiferromagnetic (AFM) order was expected for FeO 2 , whereas strong ferromagnetic (FM) fluctuations were observed for FeO 2 H.

Funder

Russian Science Foundation

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference34 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3