Highly Efficient and Selective Extraction of Gold from Thiosulfate Leaching Solution Using Functionalized Dicationic Ionic Liquids

Author:

Zhou Qiang1,Fan Yunchang1ORCID,Zhang Sheli2

Affiliation:

1. College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China

2. School of Science and Technology, Jiaozuo Teachers College, Jiaozuo 454000, China

Abstract

Thiosulfate leaching has been regarded as a promising alternative to cyanidation, but it still faces the challenge of the recovery of low content of gold from high concentrations of thiosulfate solutions. Liquid–liquid extraction is a method to address this issue but is still limited by the use of volatile and toxic organic solvents. To overcome this limitation, this work synthesized some functionalized dicationic ionic liquids (DILs) to serve as extraction solvents for the recovery of the gold–thiosulfate complex, [Au(S2O3)2]3−, from thiosulfate solutions. Experimental results indicated that the DILs showed higher extraction rates toward [Au(S2O3)2]3− compared with their monocationic-based counterparts, likely due to the stronger electrostatic interaction between the dications of the ILs and [Au(S2O3)2]3−. The transfer of [Au(S2O3)2]3− from the water phase to the IL phase was identified as an anion exchange and endothermic process. The rate of extraction was limited by the anion exchange process occurring at the IL–water interface. The extraction ability of ILs highly depended on the type of anion; specifically, the ILs with anions that had strong hydrogen-bonding ability exhibited high extraction ability toward [Au(S2O3)2]3−. Finally, DILs proved effective in the recovery of [Au(S2O3)2]3− from an actual gold leaching solution and exhibited high selectivity toward coexisting ions, indicating their potential as environmentally friendly solvents for gold recovery.

Funder

National Natural Science Foundation of China

Foundation of the ”Double First Class” Creation Project of Safety Discipline of Henan Polytechnic University

2021 High-Level Scientific Research Cultivation Project of Jiaozuo Teachers College

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3