Unraveling the Compositional and Molecular Features Involved in Lysozyme-Benzothiazole Derivative Interactions

Author:

Rial RamónORCID,González-Durruthy Michael,Somoza Manuel,Liu Zhen,Ruso Juan M.ORCID

Abstract

In this work we present a computational analysis together with experimental studies, focusing on the interaction between a benzothiazole (BTS) and lysozyme. Results obtained from isothermal titration calorimetry, UV-vis, and fluorescence were contrasted and complemented with molecular docking and machine learning techniques. The free energy values obtained both experimentally and theoretically showed excellent similarity. Calorimetry, UV-vis, and 3D/2D-lig-plot analysis revealed that the most relevant interactions between BTS and lysozyme are based on a predominance of aromatic, hydrophobic Van der Waals interactions, mainly aromatic edge-to-face (T-shaped) π-π stacking interactions between the benzene ring belonging to the 2-(methylthio)-benzothiazole moiety of BTS and the aromatic amino acid residue TRP108 of the lysozyme receptor. Next, conventional hydrogen bonding interactions contribute to the stability of the BTS-lysozyme coupling complex. In addition, mechanistic approaches performed using elastic network models revealed that the BTS ligand theoretically induces propagation of allosteric signals, suggesting non-physiological conformational flexing in large blocks of lysozyme affecting α-helices. Likewise, the BTS ligand interacts directly with allosteric residues, inducing perturbations in the conformational dynamics expressed as a moderate conformational softening in the α-helices H1, H2, and their corresponding β-loop in the lysozyme receptor, in contrast to the unbound state of lysozyme.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3