Efficient Degradation of Iopromide by Using Sulfite Activated with Mackinawite

Author:

Yu Yingtan,Lyu Ying,Zhang Ting,Liu Lin,Fan Bing,Wang Jian,Zhang Chaoxing

Abstract

Iopromide (IOP), an iodinated X-ray contrast medium (ICM), is identified as a precursor to iodide disinfection byproducts that have high genotoxicity and cytotoxicity to mammals. ICM remains persistent through typical wastewater treatment processes and even through some hydroxyl radical-based advanced oxidation processes. The development of new technologies to remove ICMs is needed. In this work, mackinawite (FeS)-activated sulfite autoxidation was employed for the degradation of IOP-containing water. The experiment was performed in a 500 mL self-made temperature-controlled reactor with online monitoring pH and dissolved oxygen in the laboratory. The effects of various parameters, such as initial pH values, sulfite dosages, FeS dosages, dissolved oxygen, and inorganic anions on the performance of the treatment process have been investigated. Eighty percent of IOP could be degraded in 15 min with 1 g L−1 FeS, 400 μmol L−1 sulfite at pH 8, and high efficiency on the removal of total organic carbon (TOC) was achieved, which is 71.8% via a reaction for 1 h. The generated hydroxyl and oxysulfur radicals, which contributed to the oxidation process, were identified through radical quenching experiments. The dissolved oxygen was essential for the degradation of IOP. The presence of Cl− could facilitate IOP degradation, while NO3− and CO32− could inhibit the degradation process. The reaction pathway involving H-abstraction and oxidative decarboxylation was proposed, based on product identification. The current system shows good applicability for the degradation of IOP and may help in developing a new approach for the treatment of ICM-containing water.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning province

Program for Liaoning Innovative Talents

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3